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This study revisits the problem of advective transfer and spectra of a diffusive scalar field in large-scale
incompressible flows in the presence of a �large-scale� source. By “large scale” it is meant that the spectral
support of the flows is confined to the wave-number region k�kd, where kd is relatively small compared with
the diffusion wave number k�. Such flows mediate couplings between neighboring wave numbers within kd of
each other only. It is found that the spectral rate of transport �flux� of scalar variance across a high wave
number k�kd is bounded from above by Ukdk��k , t�, where U denotes the maximum fluid velocity and ��k , t�
is the spectrum of the scalar variance, defined as its average over the shell �k−kd ,k+kd�. For a given flux, say
��0, across k�kd, this bound requires ��k , t�� �� /Ukd�k−1. This is consistent with recent numerical studies
and with Batchelor’s theory that predicts a k−1 spectrum �with a slightly different proportionality constant� for
the viscous-convective range, which could be identified with �kd ,k��. Thus, Batchelor’s formula for the vari-
ance spectrum is recovered by the present method in the form of a critical lower bound. The present result
applies to a broad range of large-scale advection problems in space dimensions �2, including some filter
models of turbulence, for which the turbulent velocity field is advected by a smoothed version of itself. For this
case, ��k , t� and � are the kinetic energy spectrum and flux, respectively.
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I. INTRODUCTION

The problem of scalar transport and mixing in turbulent
fluid flows has been a subject of active research for decades,
dating back to the late 1940s. Early studies by Obukhov �1�
and Corrsin �2� applied Kolmogorov’s theory of turbulence
in a straightforward manner. They found that the scalar �fluid
temperature in their case� variance behaved in the same man-
ner as the turbulent kinetic energy, cascading via a k−5/3

range to a diffusion range at high wave numbers k for dis-
posal. This result is supposed to apply to cases of relatively
small diffusivity � and viscosity 	 in the regime ��	, for
which the viscous dissipation and diffusion ranges coincide.
Batchelor �3� considered turbulent flows at moderate Rey-
nolds numbers in the regime of large Prandtl or Schmidt
number Pr=	 /�
1, for which there exists a broad viscous-
convective range k	�k�k� between the viscous dissipation
wave number k	 and diffusion wave number k�. He found
that in this range, the scalar variance spectrum F�k� scales as
k−1 and is given by

F�k� =
�


k−1, �1�

where � is the rate at which the scalar variance is dissipated,
i.e., the spectral rate of variance transport or variance flux,
and  is an effective least-rate-of-strain parameter given by
=C�� /	�1/2. Here � denotes the mean rate of kinetic energy
dissipation and C is a constant of order unity. From the
Obukhov-Corrsin and Batchelor theories one may visualize a
picture of scalar advection in flows at moderate Reynolds
numbers in the limit of large Pr, in which a hybrid spectrum
obeys the Obukhov-Corrsin k−5/3 scaling in the fluid inertial
range followed by the Batchelor k−1 scaling in the viscous-
convective range �4,5�. These pioneering theories have been
considered to be breakthroughs and attracted considerable
interest to the subject during its infancy �5–9�. Recently, fun-

damental issues in geophysical, environmental, and indus-
trial applications have sparked a surge in the area, resulting
in a huge body of research �10–31� on a variety of dynamical
aspects. Another reason for this surge is that computers have
become increasingly capable of taking on a scientific prob-
lem of this magnitude. Within the past few years, numerical
evidence in support of the Batchelor theory and its predicted
k−1 spectrum has accumulated considerably �4,22,30�. How-
ever, this is far from conclusive as the viscous-convective
ranges accessible to modern computers are still quite limited.
Furthermore, a number of studies �16,24–26� have either ar-
gued for or found spectra shallower than the Batchelor spec-
trum. For these reasons, as well as the phenomenological
nature of the Obukhov-Corrsin and Batchelor theories, fur-
ther theoretical consideration and numerical analysis �with
higher resolutions whenever possible� continue to be desir-
able.

In this study, we revisit the advection-diffusion problem
by carrying out a simple but rigorous analysis of the advec-
tive transfer term leading to a conclusion that is consistent
with the Batchelor picture �3� and with recent numerical re-
sults �4,22,30�. We consider large-scale flows, meaning that
the tail of the Fourier representation of the flows beyond
some finite wave number kd is identically zero or at least can
be ignored. Such smooth flows are relevant for practical pur-
poses as most advection-diffusion problems in the geophys-
ical and environmental contexts are primarily concerned with
large-scale advecting flows. They may even model Navier-
Stokes turbulence at moderate Reynolds numbers if kd be-
longs to the viscous dissipation range and if the exponen-
tially decaying tail of the velocity fields beyond kd can be
ignored. These large-scale flows can mediate transfer of the
scalar variance between neighboring wave numbers within kd
of each other only. It is found that the variance flux across a
high wave number k�kd is bounded from above by
Ukdk��k , t�, where U denotes the maximum fluid velocity
and ��k , t� is the spectrum of the scalar variance, defined as
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its average over the shell �k−kd ,k+kd�. From this upper
bound, it can be readily deduced that in the high k limit, the
flux diminishes if ��k , t� becomes steeper than k−1. Hence,
no spectra steeper than k−1 could support a nonzero variance
flux to the vicinity of the diffusion wave number k� in the
limit of large k� /kd, which may be identified with Pr �or Pr

1/2�
�31�. Given a persistent source and in the limit k� /kd→�,
this result implies a divergence of the scalar variance not
slower than logarithmic in k even if a variance cascade to the
small scales is realizable. The present results apply to both
passive and active scalars in large-scale flows, provided that
in the active case, the excitation of the wave numbers k
�kd of the flows by nonlinear feedback mechanism can be
ignored. They also apply to filter models of turbulence, for
which the full turbulent velocity is advected by a smoothed
version of itself. In this case, ��k , t� is replaced by the ki-
netic energy spectrum, and the flux in question is the kinetic
energy flux.

II. PRELIMINARIES

In this section, we briefly describe the advection-diffusion
equations in spectral form, principally to illustrate the cou-
pling locality, which plays a key role in the present analysis.
We then recall the variance conservation law and set out a
few notations employed in this paper.

The advection-diffusion equations governing the evolu-
tion of a diffusive field ��x , t� advected by incompressible
flows u�x , t� are

��

�t
+ u · �� = ��� + f ,

� · u = 0, �2�

where � is the diffusivity and f�x , t� is a �large-scale� source.
The spectral support of u�x , t� is assumed to be confined to
the region k�kd, where kd is a finite wave number. We con-
sider Eq. �2� in an n-dimensional �n�2� periodic domain,
enabling us to express our results conveniently in terms of
spatial averages of dynamical quantities. These results can be
seen to carry over to an unbounded domain with minimal
change. All fields are assumed to have zero spatial average.
The advected field ��x , t� can be either passive or active. In
the latter case, the nonlinear feedback mechanism by ��x , t�
on u�x , t� can be arbitrary, as long as it does not “irregular-
ize” u�x , t� by exciting the small scales of u�x , t� correspond-
ing to k�kd to the extent that these scales can no longer be
ignored. Furthermore, ��x , t� can be a vector, such as the
fluid velocity in some filter models of turbulence �for which
a pressure term is included�.

The Fourier representations of u�x , t� and ��x , t� are

u�x,t� = �
k=�k��kd

û�k,t�exp�ik · x	 �3�

and

��x,t� = �
k

�̂�k,t�exp�ik · x	 , �4�

respectively. Here k�0 is the wave vector and û�k , t� and

�̂�k , t� are the Fourier transforms of u�x , t� and ��x , t�, re-
spectively. The reality of u�x , t� and ��x , t� requires û�k , t�
= û*�−k , t� and �̂�k , t�= �̂*�−k , t�. The incompressibility of
u�x , t� further requires k · û�k , t�=0. In spectral form, the first
equation of Eq. �2� becomes

�

�t
�̂�k,t� = �

k=k�+k�

k� · û�k�,t��̂�k�,t� − �k2�̂�k,t� + f̂�k,t� ,

�5�

where f̂�k , t� is the Fourier transform of f�x , t�. The incom-
pressibility of u�x , t� manifests itself in Eq. �5� through the

fact that k� · û�k� , t��̂�k� , t�=0 if k� and k� are collinear. The
triad relation k=k�+k�, together with the constraint k�
= �k���kd, implies that k�= �k�� satisfies �k−k���kd. This
means that a given k�kd can couple with other wave num-
bers within the shell �k−kd ,k+kd� only. This coupling local-
ity has a significant consequence as will be seen in the next
section.

Given a “reference” wave number k* �k*
kd�, let us de-
note by ��, ��, �i, and �e the components of � spectrally
supported by the ball b= �k :k�k*	, its complement B
= �k :k�k*	, the inner shell Si= �k :k*−kd�k�k*	, and the
outer shell Se= �k :k*�k�k*+kd	, respectively �see Fig. 1�.
For example,

��
��

��
��
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k∗ − kd

��

�

�

�����

�����
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��
��

u

FIG. 1. A schematic description of the spectral supports for u
and for the components ��, ��, �i, and �e of �. The flux term
involves only the wave numbers within the shell �k*−kd ,k*+kd�,
which supports �i and �e.
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���x,t� = �
k�B

�̂�k,t�exp�ik · x	 . �6�

For k�kd, let ��k , t� denote the averaged variance taken
over the shell �k−kd ,k+kd�. For example, ��k* , t� is given
by

��k*,t� =

�i

2� + 
�e
2�

2kd
, �7�

where 
¯� denotes a spatial average. It is evident that ��k , t�
approximates the usual spectrum F�k , t�. In general, the ap-
proximation can become increasingly better for higher k as
the shell �k−kd ,k+kd� becomes thinner, in the sense that the
ratio of the shell thickness 2kd to its radius k becomes
smaller. For power-law spectra, ��k , t� actually approaches
F�k , t� in the limit k /kd→�. For example, for the Batchelor
spectrum given by Eq. �1�, we have

��k*� =
�

2kd
�

k
*

−kd

k
*

+kd
k−1dk =

�

2kd
ln

k* + kd

k* − kd

=
�

2kd
ln1 +

2kd

k* − kd
� , �8�

which indeed tends to ��k*�−1 in the limit k* /kd→�. Thus
��k , t� tends to F�k , t� in the limit of high k �at least for
power-law spectra�. We will express our results in terms of
��k , t� instead of F�k , t� since the former arises more natu-
rally in the present context.

Given periodic functions � and � having zero mean and
bounded mean-square gradients, we have


�u · ��� = − 
�u · ��� . �9�

This identity gives rise to a wealth of conservation laws,
particularly the variance conservation law, and is used re-
peatedly in this study.

III. MAIN RESULTS

We now present the main results of this study. First, we
elaborate on the locality of the variance transfer and then
derive the lower bound for ��k , t� as described earlier. Sec-
ond, we show that given a persistent source, 
�2� grows with-
out bound in the limit k�→�, irrespective of the underpin-
ning dynamics. Third, we compare the present finding with a
recent result �31� derived on the assumption of bounded ve-
locity gradients, i.e., ��u���, which is a weaker condition
than the present one. Finally, the slight discrepancy between
the present finding and Batchelor’s formula �1� is discussed.

A. Bounds for variance flux and spectrum

The governing equation for the evolution of the small-
scale variance 
��

2 � is obtained by multiplying Eq. �2� by ��

and taking the spatial average of the resulting equation

1

2

d

dt

��

2 � = − 
��u · ��� − �
�����2�

= − 
��u · ���� − �
�����2� , �10�

where Eq. �9� and the linearity of the advection term have
been used and the forcing term vanishes as B is assumed to
be source free. The triple-product term �flux term� in Eq. �10�
represents the net variance transfer across k* into the region
k�k*, which drives the small-scale dynamics. At the modal
level, this flux term consists of triple-product terms of the

form �̂�k , t��̂�k� , t�k� · û�k� , t�, where k�B, k��b, and k
=k�+k�. Since k��kd, this triad relation implies that k and
k� can couple only if k−k��kd. Hence, only modes in �i and
�e, i.e., within the wave number shell �k*−kd ,k*+kd�, con-
tribute to the flux term �see Fig. 1�. For this reason, the
variance transfer can be considered as being highly local,
particularly at high k, where the shell �k*−kd ,k*+kd� be-
comes relatively thin �radius becoming larger but thickness
remaining fixed�. Here, we use the term “highly local” to
emphasize the fact that k /k�→1 in the limit k* /kd→�. This
term is to distinguish the present couplings from those of a
lesser degree of locality between k�k��k* via k��k*,
where the ratio k /k� remains strictly greater than unity in the
same limit. Such couplings are clearly absent from the flux
term. From this geometric consideration, we can write


��u · ���� = 
�eu · ��i� . �11�

Substituting this result into Eq. �10� yields

1

2

d

dt

��

2 � = − 
�eu · ��i� − �
�����2�

� U
��e����i�� − �
�����2�

� U
�e
2�1/2
���i�2�1/2 − �
�����2�

� Uk*
�e
2�1/2
�i

2�1/2 − �
�����2�

�
Uk*

2
�
�e

2� + 
�i
2�� − �
�����2�

= Ukdk*��k*,t� − �
�����2� , �12�

where, as we recall, U denotes the maximum fluid velocity
and ��k , t� is the variance spectrum defined by Eq. �7�. In
Eq. �12�, the Cauchy-Schwarz inequality and the self-
explanatory �Poincaré-type� inequality 
���i�2��k*

2 
�i
2� have

been used. The bound for the flux term in Eq. �12� is inter-
esting and can be readily interpreted in what follows.

For a positive flux through k*, say �*, the final estimate
in Eq. �12� implies that

�* � Ukdk*��k*,t� �13�

or, equivalently,
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��k*,t� �
�*

Ukd

k*
−1. �14�

It follows that a positive k-independent flux is possible only
if ��k , t� becomes no steeper than k−1 �pointwise� for high k.
This constraint is consistent with Batchelor’s theory that pre-
dicts a k−1 spectrum for the viscous-convective range, which
could be identified with �kd ,k��. Since Eq. �14� implies a
divergence of 
�2� toward the small scales at least as rapid as
logarithmic in k, a positive variance flux to ever smaller
scales �including those that diminish no more rapidly than
�ln k�−1� requires a priori an unbounded variance “passage.”
This is in a sharp contrast to the classical direct energy cas-
cade �and the Obukhov-Corrsin variance cascade�, which is
supposed to proceed through an inertial range virtually free
of energy. In some sense, the energy cascade is rather “rush-
ing,” whereas the variance cascade of the present case �if
realizable� would be far less dramatic, “leaking” through a
fully filled inertial range. In the presence of a persistent sca-
lar source, 
�2� necessarily grows without bound in the limit
k�→�, for obvious reasons. On the one hand, a variance
cascade to ever-smaller scales already requires at least a
logarithmic divergence of 
�2� toward the small scales. On
the other hand, if such a cascade is unrealizable, the injected
variance is necessarily trapped at the large scales, thereby
resulting in their unbounded growth. For the sake of com-
pleteness, this argument will be made more quantitative in
the next subsection.

B. Unbounded variance growth in the limit k�\�

Similar to Eq. �10�, the governing equation for the evolu-
tion of the large-scale variance 
��

2 � is obtained by multiply-
ing Eq. �2� by �� and taking the spatial average of the re-
sulting equation

1

2

d

dt

��

2 � = − 
��u · ��� − �
�����2� + �

= 
��u · ���� − �
�����2� + �

= 
�eu · ��i� − �
�����2� + �

� − Ukdk*��k*,t� − �
�����2� + � , �15�

where Eqs. �9� and �11� have been used and the inequality is
a straightforward application of the upper bound for the flux
term derived in Eq. �12�. In Eq. �15�, �= 
��f� is the scalar
variance injection rate. For some large time t=T, say T

=1 / �2�k*
2 �, let Q̄ denote the average over �0,T� of a dynami-

cal quantity Q. Taking the time average of Eq. �15� and re-
arranging the terms in the resulting equation yields

�k*
2 
��

2 � + �
�����2� � �̄ − Ukdk*�̄�k*� , �16�

where the initial value of 
��
2 � has been omitted for conve-

nience. Upon making the substitution 
�����2��k*
2 
��

2 � in
Eq. �16�, we obtain

�k*
2 
��

2 � + �k*
2 
��

2 � � �̄ − Ukdk*�̄�k*� . �17�

In accord with a persistent source, let us assume �̄�0. Now
in the limit k�→� ��→0�, if there exists no k*�� such that
the right-hand side of Eq. �17� is positive, then 
�2� diverges
toward the small scales as discussed above. On the other
hand, if there exists k*�� such that the right-hand side of
Eq. �17� is positive, then �
��

2 �+ 
��
2 ��→�. It follows that


��
2 �→�, and hence 
�2�→�. Thus, 
�2� diverges regardless

of whether or not there is a variance cascade.

C. Discussion

When u�x , t� is not restricted to the large scales, there are
no constraints on k� and k in the triple-product terms

�̂�k , t��̂�k� , t�k� · û�k� , t� contributing to 
��u ·����. The
flux term then involves, in principle, couplings for every k�
�k* and k�k*. The presence of nonlocal couplings �be-
tween k��k* and k
k* via k��k� and the other type of
local couplings �between k�k��k* via k��k*� mentioned
earlier effectively makes the flux term unmanageable by the
present method, in the sense that its analytic estimates would
be too excessive for meaningful interpretations. For this
case, Tran �31� finds by examining the evolution equation for
the scalar gradients that if the advecting velocity fields have
bounded gradients, then diffusion anomaly, i.e., a variance
cascade to ever smaller scales, requires the variance at the
small scales to be no less than that provided by the Batchelor
k−1 spectrum. This constraint is weaker than the present one
as it does not rule out the possibility of bounded variance
corresponding to non-power-law spectra having gaps of se-
vere variance deficiency in the intermediate wave-number
region, provided that the variance requirement at the small
scales is met. The present finding, by exploiting the high
locality of the variance transfer for large-scale advecting
flows, rules out this possibility. The variance is required to
grow without bound either via bounded spectra not steeper
than k−1 �pointwise� if a variance cascade is realizable or via
unbounded spectra if otherwise.

In the absence of a scalar source, a finite variance reser-
voir cannot support a k-independent flux because such a flux
requires an unbounded variance “passage” as we have con-
cluded. Our result allows for no significant “chunk” of a
given initial variance reservoir 
�0

2� at large scales to break
away and cascade to the small scales by itself. Rather, it
suggests a gradual spread out of 
�0

2� ever more thinly in
wave-number space, giving rise to a diminishing flux, which
can be readily estimated. Suppose that at a later time, a k−1

range gets established from kd to k*
kd or beyond. Then, in
this range, the spectrum ��k , t� is bounded by ��k , t�
� 
�0

2�k−1 / ln�k* /kd�. Upon substituting this into Eq. �13�, we
obtain

�* �
Ukd
�0

2�
ln�k*/kd�

. �18�

This means that �* diminishes at least as rapidly as
�ln�k* /kd��−1. Note that although a logarithmic decay of the
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flux can be expected on heuristic grounds, Eq. �18� may not
be rigorously derived without the constraint �13�.

The present bound �14� for ��k , t� resembles the Batch-
elor formula �1� in every aspect except that Ukd in Eq. �14�
plays the role of  in Eq. �1�. This apparent discrepancy,
however, can be reconciled if we reformulate the present
problem in accord with the Batchelor setting. It can be seen
that the product Ukd is essentially an upper bound for the
velocity gradients ��u�. So if we identify 	�Ukd�2�	��u�2
with the kinetic energy dissipation rate � in the Batchelor
setting of turbulent advection, then we obtain Ukd
��� /	�1/2�. Hence, Eqs. �1� and �14� agree. This is no
surprise because the Batchelor problem would reduce to the
present case upon the hypothesis that the exponentially de-
caying tail �beyond kd� of the turbulent velocity field contrib-
utes negligibly to the advective variance transfer. As it
stands, Eq. �14� captures the intuitive physical fact that for
fixed U, flows at larger scales �smaller kd� are poorer trans-
porters as scalar spectra having larger spectral amplitudes,
i.e., larger factors �* / �Ukd�, would be required to support
the variance flux �* across k*.

IV. TURBULENT ENERGY TRANSFER BY LARGE-SCALE
ADVECTION

The above results apply to the energy transfer by large-
scale advection in turbulence. Namely, the advection of the
turbulent velocity by its large-scale component alone results
in a contributing energy flux that vanishes at high k if the
energy spectrum becomes steeper than k−1. For the Kolmog-
orov k−5/3 spectrum, this means that the large-scale advection
contributes negligibly to the direct energy transfer. On physi-
cal grounds, this is consistent with the expectation that the
large scales, while advecting the turbulent eddies, do not
stretch them significantly. The remaining of this paper is de-
voted to detailed elaboration of this fact.

We begin by recalling the Navier-Stokes equations

�v

�t
+ �v · ��v + �p = 	�v + f ,

� · v = 0, �19�

where v�x , t� is the fluid velocity, p�x , t� is the pressure, and
f�x , t� is a large-scale forcing. Let u be a large-scale compo-
nent of v, as defined by Eq. �3�, and u� be its small-scale
complement, i.e., v=u+u�. Furthermore, let v�, v�, vi, ve,
and V�k� be defined in the same ways as ��, ��, �i, �e, and
��k�, respectively. Note that V�k� is approximately twice the
usual kinetic energy spectrum and that all the components of
v so defined are incompressible. Similar to Eq. �12�, the evo-
lution of the small-scale energy 
�v��2� /2 is governed by

1

2

d

dt

�v��2� = − 
v� · �v · ��v�� − 	
��v��2�

= − 
v� · �u · ��v�� − 
v� · �u� · ��v��

− 	
��v��2�

= − 
ve · �u · ��vi� − 
v� · �u� · ��v�� − 	
��v��2�

� Ukdk*V�k*,t� − 
v� · �u� · ��v�� − 	
��v��2� ,

�20�

where the forcing and pressure terms vanish as the region
under consideration is assumed to be force free and v� is
incompressible. In the final equation of Eq. �20�, the first
term on the right-hand side represents an upper bound for the
energy transfer across k* due to large-scale advection and the
second term is the energy transfer across k* due to small-
scale advection. The former vanishes for high k* if V�k , t�
becomes steeper than k−1. This means that the latter is solely
responsible for the direct energy cascade in the classical pic-
ture of turbulence, for which the k−5/3 energy inertial range is
far too steep for the former to make a non-negligible contri-
bution. At the modal level, this result is consistent with the
expectation that triad interactions involving well-separated
scales �those due to large-scale advection in the flux term

ve · �u ·��vi�� are relatively weak. Note that not all triads of
well-separated scales are contained within 
ve · �u ·��vi� as
the term 
v� · �u� ·��v�� also has this type of triads. Such
triads are formed by large-scale modes in v� and small-scale
modes in v� and u�. As their counterparts in 
ve · �u ·��vi�,
these can be shown to be relatively weak and not responsible
for the classical direct energy cascade.

The above result may be applicable to models of turbu-
lence that are derived by regularizing the Navier-Stokes
equations by a variety of filtering techniques �see Graham et
al. �32� for a discussion of several such models�. For ex-
ample, let us consider the “Leray” model, obtained by drop-
ping the small-scale component u� from the advecting veloc-
ity in the Navier-Stokes system, i.e.,

�v

�t
+ �u · ��v + �p = 	�v + f ,

� · v = 0. �21�

For this simple model, the governing equation for 
�v��2� /2
is given by Eq. �20� without the small-scale advection term

v� · �u� ·��v��. As a consequence, the classical direct en-
ergy cascade is not realizable for the reason discussed in the
preceding paragraph. Instead, the energy behaves in the same
manner as the variance 
�2� described earlier. Namely, the
energy either cascades to the small scales via spectra not
steeper than k−1 or else accumulates at the large scales.
Given a persistent source of energy, i.e., 
v · f��0, the energy
necessarily grows without bound in the inviscid limit. Equa-
tion �21� represents a class of regularization models of tur-
bulence, which have been studied widely as alternatives to
subgrid-scale models �32� and for which the k−1 scaling for
the energy spectrum has been found by phenomenological
arguments. The present result provides a different perspec-
tive to this possible scaling.

In passing, we would like to note that the question of
realizability of a �variance or energy� cascade and the asso-
ciated k−1 �or shallower� spectrum cannot be resolved by the
present analysis. This question is challenging because a
lower bound for the flux term is highly infeasible, even for
very simple flows. Given this difficulty, one may be better

LOCAL TRANSFER AND SPECTRA OF A DIFFUSIVE … PHYSICAL REVIEW E 78, 036310 �2008�

036310-5



off resorting to numerical methods. What we have shown
here is that if there is a cascade, then it must proceed through
spectra not steeper than k−1 �pointwise�. The critical k−1 scal-
ing can be seen as most plausible for a number of reasons. In
particular, it would correspond to a cascade of maximal spec-
tral extent.

V. CONCLUDING REMARKS

In summary, we have examined the advective transfer and
spectral scaling of a diffusive field ��x , t� in large-scale in-
compressible flows u�x , t�, whose spectral support is con-
fined to the wave-number region k�kd, for some finite wave
number kd, which is relatively small compared with the dif-
fusion wave number k�. The main result obtained is the up-
per bound Ukdk*��k* , t� for the variance flux across a high
wave number k*�kd. Here U denotes the maximum fluid
velocity and ��k , t� is the variance spectrum, defined as its
average over the shell �k−kd ,k+kd�. The derivation of this
bound exploits the very fact that the advecting flows under

consideration mediate variance transfer between neighboring
wave numbers within kd of each other only. The derived
bound implies that for k
kd, a nonzero k-independent flux is
possible only if ��k , t� becomes no steeper than k−1 �point-
wise�. This result is consistent with Batchelor’s theory and
with recent numerical and theoretical results �4,22,30,31�.
One element of the present findings is the pointwise con-
straint on ��k , t� in Eq. �14�. Given this constraint and a
persistent source, the variance is required to grow without
bound in the limit k� /kd→� ��→0�, irrespective of the un-
derpinning dynamics. The present results have been shown
to apply to the Leray model of turbulence, for which the
turbulent velocity is advected by a smoothed version of it-
self. Furthermore, they apply equally to different space di-
mensions �2 as the analysis is dimension independent. Fi-
nally, the possible relation between the advecting and
advected fields does not enter the calculations. Hence, the
results are valid for both passive and active scalars, provided
that in the latter case, the nonlinear feedback mechanisms on
the flows do not alter their large-scale designation.
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